CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Basin Modelling Training: Introduction

Topics:

Introduction to Basin Modelling

Petroleum System Concept 1D/2D/3D Models Applications

Burial Subsidence Analysis

Sedimentary loading & Compaction Tectonic Subsidence Hands-on: Burial History

Thermal History

Heat Sources & Sinks Rock Thermal Properties Thermal & Maturity Parameters Hands-on: 1D Maturity Modelling

Pressure & Fluid Flow Modelling

Effective Stress & Permeability Overpressure Mechanisms Geopressure Prediction

Hydrocarbon Generation

Source Rock Parameters Kerogen Kinetics Hands-on: HC Generation

Hydrocarbon Migration Entrapment & Preservation

Raypath, Darcy, Invasion Percolation Biodegradation & Cracking

Case Studies

Malay Basin West Baram

Types of Basin-scale Modelling

- Basin infilling , e.g., stratigraphic modelling
- Fluid transport , e.g., hydrogeologic/hydrodynamic
- Tectonic deformation, e.g., structural modelling
- Petroleum system , e.g., basin modelling

A <u>Petroleum System</u> is defined as a natural system that encompasses a pod of active source rock and all related oil and gas and which Includes all of the geologic elements and processes that are essential if a hydrocarbon accumulation is to exist.

(Leslie B. Magoon and Wallace G. Dow, AAPG Memoir 60)

<u>Elements</u>

Source Rock Migration Pathways Reservoir Rock Seal Rock Trap

Processes

Generation Migration Accumulation Preservation

Source: AAPG

Petroleum System Elements

 Source Rock - A rock with abundant hydrocarbon-prone organic matter

Reservoir Rock - A rock in which oil and gas accumulates:
 Porosity - space between rock grains in which oil accumulates
 Permeability - passage-ways between pores through which oil and gas moves

 Seal Rock - A rock through which oil and gas cannot move effectively (such as mudstone and claystone)

- Migration Route Avenues in rock through which oil and gas moves from source rock to trap
- Trap The structural and stratigraphic configuration that focuses oil and gas into an accumulation

Petroleum System Processes

- Generation Burial of source rock to temperature and pressure regime sufficient to convert organic matter into hydrocarbon
- Migration Movement of hydrocarbon out of the source rock toward and into a trap
- Accumulation A volume of hydrocarbon migrating into a trap faster than the trap leaks resulting in an accumulation
- Preservation Hydrocarbon remains in reservoir and is not altered by biodegradation or "water-washing"
- Timing Trap forms before and during hydrocarbon migrating

Basin modelling is an interpretation tool for understanding the petroleum system.

Basin Modelling

Integrating geology, physics and geochemistry to simulate:

- Sediment burial and compaction : Terzaghi's and Darcy's laws
- Heat transfer : transient heat equation
- HCs generation : 1st order compositional kinetics
- HCs migration and entrapment : multi-phase Darcy's law
- Reconstruct pressure regimes and predict overpressure

Delineate hydrocarbon migration pathways and identify structural and stratigraphic traps

Assess the prospect value by estimating the quantity and predicting the quality of trapped hydrocarbons

Elements & Processes

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

MJH@2July2010

Objective of Basin Modelling

Basin modelling is used during petroleum exploration to predict the timing and extent of petroleum generation and the location of hydrocarbon accumulations.

Types of Basin Modelling

MJH@2July2010

2,D Basin Modelling WHY 2D MODELING ?

PRESSURE FIELD AND MIGRATION PATHWAYS QUALITATIVE PREDICTION (GOR, °API)

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

MJH@2July2010

3D Basin Modelling

WHY DO 3D MODELING ?

- Drainage area and flow lines delineation
- Kitchen evaluation
- Quantitative Prospect Evaluation
- Prospect Ranking

RAPID PETROLEUM SYSTEM ANALYSIS FULL 3D SIMULATION

1D Basin Modelling – Data Input

GENEX Windows 3.4.0 Well Data : BODLE-E1

File Preferences Stratigraphy Thermal Data Geochemical Measurements

ENEX Windows 3.4.0 Graphic Drawing : BODLE-E1	_ 🗖 🗵
ile <u>P</u> references <u>D</u> isplay $\leq \geq W$ ell State <u>G</u> eohistory <u>H</u> istory of Formations History of	Source Rock
WELL STATE VITRINITE REFLECTANCE	Study Name : D:\GENEXDAT\OGADEN Well Name : BODLE-1
M Gypsmal Gorrakei-1 Gabredurre	Vitrinite Reflectance (%) Depth (km)
U Hamaalei 3- W Hamaali W Hamaal W Hilaanal 4-	Áge : 0.00 Ma LF.P Ro EASY3Ro
5- 6- Gemboro Both-2	
Both-3 CTMBE I - 10.02	<i>Computing Parameters</i> No Calibration Constant Heat flo w Imposed Pressure
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Vitrinite Reflectance (%)	Open System
	2 sta: 29 Dec 2004

	T <u>y</u> U	ype /M F	Formation Name	Age (Ma)	Depth (m)	Thickness Eroded Missing	Petr Phys Litho Mea	ro ics), 7)s,	Lithologies Composition (%) Measurements (Phi Law)	Paleo Bathy (m)
1	U	•	Oligocene-P	34.00		-600.0		•		0.
2	Μ	•	Late Plioce	60.00		300.0	Litho.	•	SANDSTONE:100	0.
3	U	۲	Late Maas-E	70.00		-200.0		•		100.
4	Μ	۲	Ceno-Early	99.00		200.0	Litho.	•	SANDSTONE:100	100.
5	Μ	۲	Aptian Albi	121.00		300.0	Litho.	•	LIMESTONE:100	100.
6	F	•	M Gypsum1	126.00	456.0	456.0	Litho.	•	SAL:40 ANH:40 SHA:20	100.
7	F	۲	M Gypsum2	129.30	700.1	244.1	Litho.	•	SH:60 SA:20 AN:10 DO:10	100.
}	F	•	M Gypsum3	132.00	925.1	225.0	Litho.	•	SHAL:80 ANHY:20	100
9	F	•	Gorrahei-1	136.70	1256.0	330.9	Litho.	•	SHAL:90 LIME:10	100
0	F	٠	Gorrahei-2	139.70	1431.0	175.0	Litho.	•	LIM:80 SAN:10 SHA:10	100
1	F	۲	Gorrahei-3	144.00	1681.0	250.0	Litho.	•	SHAL:80 SAND:20	100
2	F	•	Gabredarre	154.00	2035.0	354.0	Litho.	•	MARL:50 LIME:50	200
3	F	•	Uarandab	162.00	2163.0	128.0	Litho.	•	SHAL:50 LIME:50	300
4	F	•	U Hamanlei	164.00	2573.0	410.0	Litho.	•	LIME:70 MARL:30	200
5	F	•	M Haman-1	168.30	2905.0	332.0	Litho.	•	ANH:75 LIM:20 DOL:5	100
6	F	•	M Haman-2	172.20	3205.0	300.0	Litho.	•	LIME:50 ANHY:50	100
7	F	•	M Haman-3	175.00	3405.0	200.0	Litho.	•	LIME:95 ANHY:5	100
8	F	•	L Hamanlei	190.00	3633.0	228.0	Litho.	•	LIM:70 SIL:15 SHA:15	100
9	F	•	Transition	196.00	3734.0	101.0	Litho.	•	LIM:60 SHA:30 MAR:10	100

- 🗆 🗡

- •Stratigraphy
- •Lithofacies
- •Thermal
- •Source Rocks

TIMING OF GENERATION AND EXPULSION

2D Basin Modelling – Data Input

Cross-section
Stratigraphy
Lithofacies
Thermal
Source Rocks

PRESSURE PREDICTION AND MIGRATION PATHWAYS

3D Basin Modelling – Data Input

Hydrocarbon Generation

Maturity modelling

Depends on Cooking TIME and TEMPERATURE

Backstripping/Decompaction

MJH@2July2010

BACKSTRIPPING/DECOMPACTION

Process of thickness reconstruction through sequential removal of top sedimentary layer

• Assume the amount of solid matrix remains constant, while rock volume is changed with depth of burial due to the loss of porosity.

GEOHISTORY/BURIAL HISTORY

 To determine depositional, thermal & maturity histories

 Reconstruct by backstripping or decompaction, based on porosity-depth relationship

- 1. Time of uplift ?
- 2. Which thickness is eroded ?
- 3. When do rapid subsidence occur ?
- 4. What is the subsidence rate ?

The Time Temperature Index

MJH@2July2010

Lopatin TTI Maturity Model

AGE (millions of years before present)

Construct burial history curves

• Superimpose temperature history

Steps:

• Assign t & T factors to each interval

t-factor (Time) is length of time (m.y) spent in the interval T-factor (Temperature) assumes rate of reaction double with an increase (10°C) in temperature

• Calculate interval TTI by multiplying t-factor x T-factor

• Add up all interval TTI to get Total TTI

Stratigraphy

Formation	Bottom Depth (m)	Age (my)	Thickness (m)
PB-nn21	592	2	592
PB-nn18	619	2.4	27
PB-nn17	692	3.4	73
PB-nn15	802	4.5	110
PB-nn12	834	5.5	32
PB-nn11	927	16.2	93
BG-nn4	1093	22	166
BM-nn3	1434	49	341
TC	2043	65	609

Steps:

- Begin by reconstructing the depositional and tectonic history of the sedimentary layer.
- Best done by plotting bburial depth against Age.
- Plot present-day temperature profile & extrapolate into the past.
- Calculate time spent in the temperature intervals.
- Compute interval TTI by multiplying time spent and temperature factor (t-factor x T-factor).
- Summed all up to give TTI maturity.

Note: These are NOT cross-sections

- Use time stratigraphy data for constructing burial history curve.
- Locate starting & end points
- Identify the events (time) and amount of burial (thickness)

- Identify the events (time) and amount of burial (thickness)
- Plot the time-depth coordinates

Events	Time (my)	Depth
Present-day	0	2043
PB-nn21	2	
PB-nn18	2.4	
PB-nn17	3.4	
PB-nn15	4.5	
PB-nn12	5.5	
PB-nn11	16.2	
BG-nn4	22	
BM-nn3	49	
ТС	65	0

• Plot second position for Formation TC in time & depth

Events	Time (my)	Depth	Calculation
Present-day	0	2043	
PB-nn21	2		
PB-nn18	2.4		
PB-nn17	3.4		
PB-nn15	4.5		
PB-nn12	5.5		
PB-nn11	16.2		
BG-nn4	22		
BM-nn3	49	609	= 609 (i.e thickness of TC
TC	65	0	0

• Complete burial history for Formation TC

Calculation Events Time (my) Depth = 609+341+166+93+32+110+73+27+592 Present-day 2043 0 PB-nn21 2 1451 = 609+341+166+93+32+110+73+27PB-nn18 2.4 = 609+341+166+93+32+110+73 1424 PB-nn17 1351 = 609+341+166+93+32+110 3.4 PB-nn15 4.5 = 609+341+166+93+32 1241 PB-nn12 5.5 = 609+341+166+93 1209 PB-nn11 = 609+341+166 16.2 1116 BG-nn4 22 950 = 609 + 341= 609 (i.e thickness of TC BM-nn3 609 49 тс 65 0 0

BASIN MODELLING

Learning Outcomes

- 1. To build a 1D model that captures the main elements and processes of the petroleum system to allow the assessment of source rock maturity and the timing of hydrocarbon generation.
- 2. To build a simple source rock maturity map using results from the 1D modelling.
- 3. T o assess potential migration pathways and evaluate whether a specific can be charged, or not.

STEPS

- 1. Data Collection
- 2. Construct 1D model of calibration well
- 3. Incorporate thermal model by defining the boundary conditions
- 4. Run model
- 5. Compare calculated results with the observed data (calibration)
- 6. Adjust basal heat flow values until a satisfactory match is obtained. This heat flow value is assumed to represent the regional basal heat flow and thus can be applied to the kitchen area.
- 7. Build the 1D model of a pseudo-well in the kitchen area. Apply the deduced heat flow value.
- 8. Incorporate appropriate source rock properties (TOC, HI, kerogen kinetics)
- 9. Run kitchen area pseudo-well model. Use the results to determine the depth to the top of the oil window and the timing of hydrocarbon generation.
- **10.** Transfer the depth to oil window on to the source rock map and color in the mature source pod.
- 11. Overlay the reservoir map onto the source rock map (assuming vertical migration).
- **12.** Trace the potential migration pathways. Can the prospect be charged?

WELL STRATIGRAPHY

Table 1.

	LANGGUN TIMUR	1							
		TOD (m)							
	LATER	TOP (m)	BASE (III)	ERODED (III)	DEPO FROIVI (IVIa)	DEPO TO (IVIA)	ERODED FROIVI (IVIA)	ERODED TO (IVIA)	LITHOLOGY
Pleistocene	PB-nn21	0	592		2	0			Sh
Ticistocene	PB-nn18	592	619		2.4	2			Sh
	PB-nn17	619	692		3.4	2.4			SIst
Pliocene	PB-nn 15	692	802		4.5	3.4			Sst
	PB-nn12	802	834		5.5	4.5			Sh
U. Miocene	PB-nn11	834	927		10	5.5			Sh
I Miocono	BG-nn4	927	1093	457	22	16.2	16.2	10	Sst
L. MIOCEITE	BM-nn3	1093	1434		25	22			Lst
Pre-Tert.	TC	1434	2042	305	65	49	49	25	Dolomite

Table 2.

	SINGA BESAR-1								
	LAYER	TOP (m)	BASE (m)	ERODED (m)	DEPO FROM (Ma)	DEPO TO (Ma)	ERODED FROM (Ma)	ERODED TO (Ma)	LITHOLOGY
Pleistocene	PB-nn21	0	485		2	0			SIst
	PB-nn18	485	558		2.4	2			Sh
DU	PB-nn17	558	704		3.4	2.4			Sh
Pliocene	PB-nn15	704	722		4.8	3.4			Sh
	PB-nn12	722	768		5.5	4.8			Sh
U. Miocene	PB-nn11	768	783		10	5.5			Sh
Due Text	тс	783	860	180	65	22	22	10	Lst
Pre-Tert.							65		

Table 3.

	MATURITY WINDOWS		
	(%Ro)	Depth (m)	Depth (nearest contours)
Immature	0.25		
Early Oil	0.55		
main Oil	0.7		
Late Oil	1		
Wet Gas	1.3		
Dry Gas	2		
Overmature	> 4.0		

Langgun Timur-1 X 428738m Y 615812m KB 15m WD 95m TD 2042m

Singa Besar-1 X 407013m Y 650734m KB 16m WD 110m TD 806m

CALIBRATION DATA

LANGGUN TIMUR-1			
DEPTH (m)	Min Vro (%)	Max Vro (%)	Mean Vro (%)
921	0.25	0.37	0.3
1003	0.25	0.39	0.31
1113	0.25	0.37	0.28
1132	0.25	0.36	0.31
1184	0.25	0.39	0.31
1195	0.25	0.36	0.3
1305	0.3	0.42	0.36
1341			1.09
1392	1.08	1.18	1.11
1414	1.22	1.58	1.44
1428	1.07	1.2	1.15

Table 5.

1430 82 100 2036 102 120	DEPTH (m)	Temp (Celsius)	Corrected
2036 102 120	1430	82	100
	2036	102	120

Table 6.			
SINGA BESAR-1			
DEPTH (m)	Min Vro (%)	Max Vro (%)	Mean Vro (%)
631	0.25	0.39	0.31
686	0.25	0.35	0.29
741	0.25	0.42	0.34
Table 7.			
DEPTH (m)	Temp (Celsius)]	
DEPTH (m) 732	Temp (Celsius)		

Burial History, LanggunTimur1

🗇 IES

DAA@2July2010

8-

ន្ល-

-23

<u></u>6-

ĝ

ត្ត

8

-22

8

ភ្ន-

X [km]

Pseudo-well from the Kitchen Area

Potential Migration Pathway from the Modeled Kitchen Area

DAA@2July2010

DAA@2July2010

The temperature interval

- Lopatin chose the 100 110 temp interval as the base interval and assigned it an index value n=0
- He then assigned other intervals the index values on the basis of:

 $n = (T_i - 100)/10$

detailed in the following table

Temperature interval (°C)	n
30-40	-7
40-50	-6
50-60	-5
60-70	-4
70-80	-3
80-90	-2
90-100	-1
100-110	0
110-120	1
120-130	2
130-140	3
140-150	4
150-160	5
160-170	m

Temperature intervals

Lopatin then defined a Temperature Factor (γ)

 Rate of maturation increases by a factor of 2 for each 10°C interval so within any interval T_i-T_{i-1}:

Temperature interval (°C)	n	γ
30-40	-7	$2^{-7} = 0.0078$
40-50	-6	$2^{-6} = 0.0156$
50-60	-5	2 ⁻⁵ = 0.0313
60-70	-4	$2^{-4} = 0.0625$
70-80	-3	2 ⁻³ = 0.125
80-90	-2	$2^{-2} = 0.25$
90-100	-1	$2^{-1} = 0.5$
100-110	0	2 ⁰ = 1
110-120	1	2 ¹ = 2
120-130	2	$2^2 = 4$
130-140	3	$2^3 = 8$
140-150	4	2 ⁴ = 16
150-160	5	$2^5 = 32$
160-170	т	2 ^m

Temperature factors for different temperature intervals

MJH@2July2010

	Temperat	ure-factor		tim	e-factor	
TTI Calculations						
Temp. interval	n	γ =2n	Age (Ma)	Time spentin temperature interval (My)	Interval TTI	Cumulative TTI
			Formation A			
20-30	-8	0.00390625				
30-40	-7	0.0078125				
40-50	-6	0.015625				
50-60	-5	0.03125				
60-70	-4	0.0625				
70-80	-3	0.125				
80-90	-2	0.25				
90-100	-1	0.5				
100-110	0	1				
110-120	1	2				
120-130	2	4				
130-140	3	8				
140-150	4	16				
150-160	5	32				
160-170	6	64				
170-180	7	128				
180-190	8	256				
190-200	9	512				
200-210	10	1024				
210-220	11	2048				
220-230	12	4096				
230-240	13	8192				
240-250	14	16384				
250-260	15	32768				
260-270	16	65536				
270-280	17	131072				
280-290	18	262144				
290-300	19	524288				
300-310	20	1048576				
310-320	21	2097152				
320-330	22	4194304				

The time interval

- For his time interval, Lopatin selected the time spent by the sediment in each temperature interval
- The maturity added in any temperature interval I is given by:

Maturity_{*i*} = $2^{n_i} \Delta T$

Now, since maturation is cumulative

 The total maturity a sediment achieves passing through all time intervals in its burial history is given by the Time Temperature Index:

Stage	TT	Ro	ΤΑΙ
Onset of oil generation	15	0.65	2.56
Peak oil generation	75	1.00	2.9
End of oil generation	160	1.30	3.2
Upper TTI limit for occurrence of API 40° oil	500	1.75	3.6
Upper TTI limit for occurrence of 50° API oil	1000	2.0	3.7
Upper TTI limit for wet gas	1500	2.2	3.75
Upper TTI limit for dry gas (methane)	65000	-	-

Simplified comparison

Stage	ΤΤΙ	Ro	ΤΑΙ
Onset oil generation	15	0.65	2.65
Peak oil generation	75	1.00	2.9
End oil generation	160	1.30	3.2
End wet gas generation	1500	2.2	3.75
End dry gas generation	65000	_	_

• Assumptions:

- Both time and temperature are interchangeable variables in oil generation
 - Short time-high temp = long time-low temp
- Dependence of maturity on time is linear: double the cooking time at constant temperature doubles the maturity

Lopatin TTI is a simple burial history model

- ignores compaction effects

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

(Angevine, Heller & Paola, 1993)

Porosity Depth Curves: Shales

Porosity Depth Curves: Sandstones

MJH@2July2010

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Source: Wygrala, 1989

Tectonic Subsidence History

 useful in explaining the basin-forming mechanism

 obtained after removal of the subsidence due to sediment load & corrections for variation in water depth & eustatic sea-level changes.

Organic-rich Source Rock Thermally Matured Organic Matter Oil

The temperature distribution in a basin is the result of HEAT TRANSFER

HEAT TRANSFER =

HEAT FLOW + HEAT SOURCE/SINK

Method of Heat Transfer

• Conduction

- Heat transferred through a solid
- Always important

Convection

- Heat transferred by fluids
- Important if hydrothermalism

Radiation

- Generated by radioactive decay
- Important in the crust

Estimating Radiogenic Heat Production from GR Logs

 $A = 0.0158 \cdot (API - 0.8)$ (Bücker & Rybach, 1996)

Heat Flow

- The heat flux measures how much energy is flowing through a given surface
- in sedimentary basins,
 - the standard unit is mW/m²
 - HFU (heat flow unit) 1HFU=41.8 mW/m²
- Orders of magnitude
 - 40 to 100 mW/m2 on continental crusts
 - 50 to 300 mW/m2 on oceanic crusts

Contributors to Surface Heat Flow

- Sediments
 - Gamma ray API
- Crust
 - strong variations with crust nature/age
 - usually described as decreasing exponentially with depth :
 - $A = Ao \exp(-z/zc)$
- Lithospheric Mantle
 - varies with age and composition of the lithosphere
 - depth of the lithosphere/astenosphere boundary
- Asthenospheric (limit 1300°C)
 - convective mantle
 - radiogenic source

Temperature Data

• Borehole temperatures (BHT) need to be corrected from the cooling of the mud circulation, using Horner Plot corrections or statistical methods.

 Production tests which are more reliable but rare in exploratory wells (DST, RFT).

Visuals of coals as a function of thermal evolution

Peat

Dull Lignite Brown coal

Anthracite

Maturity Determination of Source Rock

- Vitrinite Reflectance most commonly used
- Spore Colouration Index (SCI)
- Biomarker maturity ratios

Vitrinite Reflectance

< 0.5 : Immature 0.5 – 0.7 : Early mature 0.7 – 1.3 : Mature 1.3 – 2.0 : Post-mature

Process Flow: Maturity Modelling Calibrate with actual measured data

MJH@2July2010

Advantages & disadvantages of VR

Advantages :

- extensively used in basin model
- wide range of maturity ranges
- technique simple, cheap and quick
- vitrinite is common in post-silurian basins

Disadvantages :

- analysis subject to human error
- identification of 'true' vitrinite from cavings, recycled, oxydized, mud additives.
- subjects to polishing quality
- perhydrous vitrinites
- absent in pre-Silurian

Maturity Determination of Source Rock Spore Colouration Index (SCI)

VITRINITE

TAI=

120 m 1 120 m 3000 m 3000 m 1. 120 m 0.5% - 1390 m 2. 1390 m 0.5% - 1390 m 3. 1390 m 3. 1390 m 3. 1390 m 0.5% - 120 m 0.5% - <th></th> <th>MATURITY</th> <th>COLOR</th> <th>1-5</th> <th>ANCE</th>		MATURITY	COLOR	1-5	ANCE
1120 m 3000 m IMMATURE 1+ 3000 m 2- 2 120 m 1000 m 2+ 1390 m 3000 m 3- 1390 m 3000 m 3- 1000 m 3- 3+ 1120 m 3000 m 3+ 1120 m 3+ 1.3% -				1	
1390 m 2 - 0.5% - 1390 m 3000 m MATURE MAIN PHASE OF LIQUID PETROLEUM GENERATION 3 1120 m 3000 m 3* - 1.3% - 1120 m 3000 m 4- 4 1120 m 500 m 5 5	1120 m 3000 m	IMMATURE		1+	
1390 m 2+ 1390 m 3000 m 3000 m ATURE MATURE 3- PETROLEUM 3 OF LIQUID 3 PETROLEUM 3 OR 3+ DRY GAS 4- OR 4 (5) (5)				2	0.5%
1390 m 3000 m MATORE 3- 1390 m 3000 m GENERATION 3 Image: Strain of the strain				2+	0.5%
1390 m 3000 m 3000 m PETROLEUM GENERATION 3 Image: Stress of the str		MAIN PHASE OF LIQUID		3-	
Image: Second	1390 m 3000 m	PETROLEUM GENERATION		3	
DRY GAS OR BARREN 4 (5)				3+	- 1.3% -
1120 m BARREN 4 5000 m (5)		DRY GAS OR		4-	
(5)	1120 m 3000 m	BARREN		4	
				(5)	

Paleo heat flow from maturity calibration

effect of erosion on vitrinite profile

warmer thermal regime in the past

Source Rock Characterization Rock-Eval Parameters

Increasing Oven Temperature

Changes in TR and Tmax

Espitalie et al., 1977

Darcy's law

 $Q = KA \frac{Z_2 - Z_1}{L}$

• fluid volume flux is proportional to cross sectional area, height difference and permeability of porous medium

• if permeability is low, the flow is slow

Permeability of rocks

Permeability varies over many orders of magnitude

Unit of permeability: 1 mD (milliDarcy) = 10^{-15} m²

Kozeny - Carman formula

if $\phi > 0.1$

$$K = \frac{0.2\phi^{3}}{S_{0}^{2}(1-\phi)^{2}}$$

if $\phi \leq 0.1$

$$K = \frac{20\,\phi^{5}}{S_{0}^{2}(1-\phi)^{2}}$$

K:intrinsic permeability (m²)SO:specific surface area (m²/m³) ϕ :porosity

Pressure Depth Profile

Pressure (MPa)

Porosity vs Depth: Undercompaction

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Overpressuring Mechanisms:

• Loading Stress :

•Volume change/Unloading :

•Fluid Movement & Others :

Disequilibrium Compaction

Ineffective dewatering of pore fluidsLow permeability & high sedimentation rates

Volume Expansion

Hydrocarbon Generation

Swarbrick, et al. (1998)

Lateral Transfer & Lateral Drainage

Pre-drill pore pressure prediction Methods Log Analysis of Offset Wells Seismic Velocity Basin Modelling

Pore Pressure Prediction Methods

Porosity Graphs 0.4 0.6 0 0.2 0.8 0 Ratio 500 •Hottman & Johnson (1965) •Eaton (1972) 1000 **Equivalent** Depth 1500 •Forster & Whelan (1966) 2000 •Magara (1968) •Dobrynin & Serebryakov (1978) 2500 •Hart et al (1995) •Harrold et al (1999) 3000 Depth •Bowers (2001) 3500 **Constitutive Equation** 4000 •Dutta (1988) •Dobrynin & Serebryakov (1989) 4500

5000

Terzhagi (1923) defined effective stress (σ) as the difference between normal stress (S) and pore pressure (Pf).

$\sigma = S - P_f$

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

PRINCIPLES OF EDM & EATON:

• Disequilibrium compaction only:

Mechanical compaction Empirical or soil mechanics

• Porosity-based methods :

Porosity relationships Normal compaction curves Lithologic controls

CAUSAL MECHANISMS :

Disequilibrium Compaction Hydrocarbon Generation & Cracking Aquathermal Pressuring Clay Dewatering Clay Diagenesis Lateral Transfer

PRESSURE PREDICTION METHODS:

Equivalent Depth Empirical Ratio (e.g Eaton)

Need to understand the origins !

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Chemical compaction

Rock containing suitable amount and type of organic matter and capable of generating hydrocarbons given the right maturity (temperature & pressure conditions).

- Quantity: does the rock contain sufficient quantity of organic matter to generate hydrocarbons?
- Quality of the organic matter : is the organic matter capable of generating oil or gas or both?
- <u>Maturity</u> of the organic matter : has the organic matter been heated sufficiently to generate petroleum?

Analytical Chart

MJH@2July2010

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Petroleum Migration Processes

- Petroleum Expulsion
- Secondary Migration
- Tertiary Migration

Forces Controlling Migration Efficiency

- Buoyancy
- Capillary
- Pressure Gradient
- Others

Numerical Simulation

- Traditional Darcy Flow
- Invasion Percolation
- Ray-Tracing

Petroleum Migration

Primary Migration

Expulsion of petroleum out of the source rock into the carrier rock.

Secondary Migration

Along the carrier rock to the trap, including re-migration. Interplays between buoyancy, hydrodynamic and capillary pressure.

• Tertiary Migration Leakage out of the trap.

Migration mechanisms:

Mechanisms for primary migration:

- (1) hc in water solution,
- (2) micellar solution,
- (3) emulsion,
- (4) molecular diffusion, molecular film or
- (5) as separate phase (oil, gas, oil dissolved in gas or gas dissolved in oil) moving along the kerogen network or through pore system.

Less likely HC expulsion in aqueous solution because of the amount of soluble HC fractions does not match with the expected found in the typical crude oils.

Primary Migration

 Modeled using pressure-driven two-phase fluid-flow in compacting porous medium or using minimum oil saturation as a necessary condition to the formation of an oilwet network in a source rock before expulsion

• Therefore treated empirically, calibrated from geochemical data

•Through diffusion when a continous organic netwrok is present (Stainforth & Reinders, 1990)

Formation and expulsion of oil in a source rock. Sketch by P. Ungerer (unpublished).

Primary Migration

- Rapid expulsion before oil cracking favors oil accumulation
- Late expulsion allows for oil cracking inside the source rock, leading to gas accumulation
- The physics of expulsion is not well known to give predictive values of saturation threshold or the relative permeabilities
- Modelled: (1) saturation threshold, or (2) pressure-driven fluid-flow
- Use the amount of free hydrocarbons in mature source rocks (Rock-Eval S1) to calibrate expulsion

Secondary Migration

Must reach minimum saturation before oil can flow.

Seek tortuous path of least resistance

Saturation resulted volumetric loss associated with migration

Figure 12.3. Reservoir filling. (a) Petroleum migrating into a trap from a pod of active source rock to the right of the diagram. (b) During the initial filling process, the coarsest beds are filled first with petroleum. Widespread mixing is impossible due to poor reservoir-wide connectivity. (c) and (d) The increasing column height causes other (but not all) parts of the reservoir rock to become saturated with petroleum.

Laboratory experiment of petroleum migration (Thomas and Clouse, 1995)

CCOP EPPM P1W3 Basin Analysis Workshop, Langkawi, 2nd August 2010

Buoyancy

Pressure difference between a point in the petroleum column and the surrounding pore water.

buoyancy force
$$\Delta P = Y_p g(\rho_w - \rho_p)$$

 $Y_{\rm p}$ = height of petroleum column, g = acceleration

$$\rho_{\rm w}$$
 = subsurface density of water,

 $\rho_{\rm p}$ = subsurface density (

Capillary Pressure

Function of interfacial tension between the immiscible fluids and the pore throat sizes.

Hydrodynamic

Hydrostatic Model

Hydrodynamic Model

(Khan et al., 2006)

Other factors

Permeability anisotropy

Hydrocarbon molecular size

Adsorption

Temperature (diagenesis, degassing, solubility etc)

(Ringrose & Corbett, 1994)

(Momper, 1978)

Secondary Migration

Modeling Options

- Darcy Flow
- Invasion Percolation
- Ray-Tracing

Darcy Flow

Invasion Percolation

Ray-Tracing (Map-based)

Fully coupled processes

Takes into account phase changes.

All type of trapping (capillary, permeability, hydrodynamics etc)

Very long simulation time

Low resolution grids

Shorter migration distance

High hydrocarbon losses

Instantaneous migration

Capillary trapping only

Shorter simulation time

Allows multiple realization

Longer migration distance

Minimize migration losses

Very rapid, instantaneous migration

Gravity-driven migration

Lateral migration below the seal

Neglecting HC phases, pressure gradient etc)

User imposed barriers